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PRACTICAL CALCUUTIOK OF LAHiBAIZ AND TURBULENT 
BLED-OFF BOUNDARY LAYERS~ 

R. Eppler 
B6lkow - En tu ic klungen KG 

1. Introduction 

Bleed-off of boundary layer aaterial through small ori- 
fices or porosities at the wall in contact with flow has long 
been known as effective means for improvement of flow character- 
istics [l]. On the one hand it penits longer conservation of 
the laminar boundary layer and on the other it helps prevent 
separation of the turbulent boundary layer,or retards it [Z], 
both of which can lead to considerable reductions of drag. 
Often the two effects of bleed-off overlap. Where bleed off 
is presert in an air foil, for preservation of laainarity at 
high-speed flight, it will also have a certain effect in re- 
tarding the separation when it can no longer prevent the 
reversal during slow flight. Conversely, continuous siphoning 
for lift increase, i . e . ,  for retardation of separation during 
s1o.t flight, must in principle have a favorable influence on 
the reversal at high-speed flight during a change in pressure 
distribution. Up til now hardly any thought has been gi*ren to 
the combination of these two effects, since entirely different 
amounts of bleed-off are required at different points. But 
lately there has been some approach to this combination. A 
valuable a:d in realizing such a bleed-off combination is a 
method of calculation that permits uniform treatment of all 
cases. 

'Report from Bolkow-Dcvelopmcnts, Inc. 
*humhers in the margin indicate pagination in the foreign text. 
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This study will report on a solution of the problem. In 
the foreground will be the method of calculation with one param- 
eter by means of Urndn's (31 Conservation of Momentum and of 
Wieghrrdt's [4 )  energy theorem, which was first applied suc- 
cessfully by A. Nalz for laminar boundary layers (51.  Since 
then the method has proven itself for many other purposes. 
Wieghardt (6) calculated laminar boundary layers with bleed-off 
In which the minimum amount of suction needed for conservation 
of laminar flow was also calculated, Truckenbrodt [7] extended 
Walz's method to turbulent boundary layers by using semiempir- 
ical equations based on experimental and theoretical investi- 
gations by Ludwieg and Tillrann [8],and Rotta (91,instead of 
different relations derived from velocity profiles during 
laminar flow. The mathematical Simplifications used did 
result in unattractive errors for a few special cases, partic- 
ularly in the vicinity of the turbulent separation point. 
Schulz [lo] offered an improvement, particularly effective for 
that point. A procedure by Walz [I]] for the turbulent case 
including compressibility, which operates without mathematical 
simplifications, is semigraphical and thus little suited for 
the digital computer. Only lately have Schlichting and Pechau 
(12,13] reported on the extension of Truckenbrodt's theory of 
turbulence to bleed-off, in which additional mathematical 
simplifications were carried out. 
particularly annoying since the empirical fundamentals of the 

It is hard to dis- 
tinguish whether existing shortcomings are of purely mathe- 
matical nature or if they are due to the empirical fundamentals. 

Such simplifications are 

theory of turbulence are still uncertain. 1 2 2 2  

For a case without bleed-off it was recently tried to 
avoid the simplifications introduced by Truckenbrodt; this led, 
simultaneously, to further unification of laminar and turbulent 
cases and a possibility for simple programming on digital com- 
puters [ 1 4 ] .  It was demonstrated that the empirical 
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fundamentals used by Truckenbrodt are better than the results 
gained with the method had led one to suspect. 
those methods to the case of bleed-off, which will be presented 
subsequently, again permits simultaneous treatment of laminar 
and turbulent boundary layers and solves the approximation dif- 
ferential equations, according to the best presently available 
enpirical fundamentals, without an uncertain error. Here, too, 
a big difference is shown from Schlichting and Pechau. Unfor- 
tunately, possibilities for comparison of experiments are still 
sparse. :]ut the results gained are entirely plausible and 
because a large amount can be obtained in a simple way, and 
quickly, it has become possible to check any and all experi- 
mental results with them. Differences between theory and ex- 
periment can be pursued back to the empirical fundamentals 
because of the easily grasped method of solution, permitting 
their verification and correction. 

Extension of 

The case without bleed-off, which is completely contained 
as special case, will be treated in detail once more, since my 
cited lecture appeared in print without the corresponding illus- 
trations. 

2. Basic Eauations 

The following quite well known relations (with subse- 
quently explained symbols) can be formed from-L. Prandtl's 
well known partial differential equations for velocity u(x,y)  

in the boundary layer (see Fig. l ) ,  by formation of moments 
through application of Bernoulli's equation for the outside 
flow Ucx) in the plane incompressible case, according to von 
KiirmLn and Wieghardt: 
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(1 1 
I .  d , d U =  r.-+r;, 
U ¶ & i L  W f U &  @U' 

I d  d + t  rb ---(t.PdJ = 2 p -  + e. tP& 
. (2) 

where vo is normal velocity 
at the wall, positive in the 

According to Walz [SI dis- 
Fig. 1 Sketch of Coordinates y-direction [blow-off), . and Vel~cities. 

placement thickness is shown as 

the so-called pulse 

and 

nd en rgy l o s s  thickness as 

Symbol T ~ ,  which occurs in the Conservation of Momentum equa- 
tion ( l ) ,  is shearing stress at the wall 

in 
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from equation (2) ,  generated at first formally during formation' /223 
of moments, in which d is interpreted 3s energy dissipation and 
t as change in turbulence (aisappearing for laminar flow). The 
whole equation (2) can be treated as energy theorem. The (con- 
stant) density of the flowing medium is 9 ,  kinematic viscosity 
is v. 

Shearing stress T from equation (7) is analogous to (6) 
for laminar flow 

P r  

7 

bat still represents a big uncertainty for the turbulent boun- 
dary layer, 

Equations (1) and (2) are at first valid only for the as- 
sumption that the solution u(x,y) of the partial Prandtl.dif- 
ferential equation is known for the given functions of U(x) 
and V O ( X )  and that the values required for equations (1) and 
(2) can be calculated from (3) to (7) with it. For the case 
of turbulent flow velocities averaged over time can be used 
during consideration of the contribution of turbulence to 
shearing stress. 

Reversal of the calculation procedure for an approximate 
solution is carried out by making certain assumptions about the 
distribution u(x,y), and for the case of turbulent flow a l so  
.Il)out shearing stress T. This will be described in more detail 
in the following section. 

3. Form Parameter, Wall Shearing Stress and Dissipation for 
Turbulent Flow 

Two relations, (1) and (Z), are available for 6 i .  A 

statement can be made for u(x,y), which contains two independent 
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values. Usually one independent value is taken for the thick- 
ness of the boundary layer, that is for distortion of u(x,y) in 
the y-direction, another for the shape of the boundary layer 
through a statement like 

by entering this arrangement into (3) to (8) one gets all the 
values defined by (3) to (7) as functions of 6(x) and X ( x ) ;  
equations (1) and (2) become a system of differential equations 
for these two unknown values. 
subsequently with their solutions, for u(x,y) from equation 
(9), for the 6i from (3) to (5 ) .  

Approximations can be obtained 

There is a large number of different equations (9) and 
many methods and procedures for their solutions. The following 
one, introduced by Walz and Wieghardt, appears to be the most 
easily understood calculation method. When entering (9) in (3) 
the transformation w y / 6  shows that 6 1  is 
i .e.,  that 6 1 / 6  depends on A only because 

The same holds for 62 and 63. This makes 

proportional to 6, 

(1 0) 

the quotient of two 
6i a function of h only, which can be obtained once and for all 
for each given (9). For instance, by puttir.g 

- t  6 3  H32 62 

and 
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H 1 2 = F ( H s 2 )  can be obtained by elimination of X and 6 1 ,  which is 
needed in equation ( l ) ,  expressed in 6 2  and 63. Should one 
succeed in expressing shearing stress and dissipation similarly 
simply through 6 2  and 63, the solution of the (1) and (2) 
equation system is recommended without further transformation. 
According to (6) and (9) shearing stress at the wall is 

Here is 6 ~ / 6 ~ ,  already shown as function of X only; this can 
also be arranged €or af/a n through (9). Through reversal of 
(11) shearing stress at the wall can also be expressed through 
8 2  and 6,.  

Dissipation can also be brought into suitable form through / 2 2 4  

As soon as the functions H 3 2 ( X ) ,  H 1 2 ( H 3 2 ) ,  E * ( H J z )  and D " ( H 3 2 )  

have been obtained for a given equation (9) the system (1) and 
(2) must be integrated numerically. With the results 6 2 ( x )  

and 6E(x) one can find H 3 2 ,  from it 
equation (9 ) ,  the basic velocity distribution u(x,y). In most 
cases the last step is not carried out; generally it is quite 
satisfactory t o  have in 6 2  a value for friction losses and in 
X [or equivalent value, like H 3 2  fror;. (ll)] an indication for 
the shape, resp. the separation tendency cf the boundary layer. 

and, with the aid of 

Everything has not been traced back to equatic;n (n).  The 
closer on. comes to the exact solution u(x,y) with it the better 
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will be the results. 
are, therefore, fulfilled in advance in function f(X,y/G) from 
equation ( 9 )  

The most important boundary conditions 

+ I X m  = f(X,O) = 0, f(A,=) = 1, 

It is already sufficient to fulfill the last ~ W Q  boundary 
conditions in the finite, i.e., for the distance of a certain 
bomdary layer thickndss 6 from the wall, 01' wl .  Even though 
Walz has shown that after consideration Qf (15) the special 
equation (9) has little influence on results where no bleed-off 
occurs, some attention will still be devoted t o  that question 
since the joint treatment of bled off boundary layers and unin- 
fluenced ones includes a large range of various velocity pro- 
files, which cquld create inaccuracies. 
influence on the three functions required for (1) and (2). 

Important is only the 

A particularly good premise was already provided by 
Pohlhausen (IS). He puts 

;= 1 for n > 1 

and fulfills the boundary conditions with the fourth degree 
polynomials P I  and PP (equation (15)). This so-called P4- 
statement is, like the improved P,-statement, too coarse for 
our purposes. Much better suitable are surely the velocity 
profiles that are generated at the so-called "similar boundary 
layers" (Hartree profile), particularly for flows where the 
for7 parameter does not vary quickly. Walz [SI already em- 
ployed these solutions, which are exact for certain velocity 
distributions, for calculatim of the required connections. 



Inaccuracies  t h a t  have s l ipped  i n  do not p l ay  an important 
role i n  Walz's case but  they c a r r y  more weight i n  t h e  ca l cu la -  
t i o n  of  bleed-off  condi t ions.  For t h a t  reason a few more 
similar so lu t ions  were obtained with t h e  corresponding values  
f o r  H32, H l a r  E* and D* (Hartrse p r o f i l e ) .  In  Fig.  2 da ta  
po in t s  are p l o t t e d  f o r  t h e  s i m i l a r  so lu t ions  without b leed-of f  
for increas ing  pressure  (Hartree p r o f i l e )  and o t h e r s  for so lu-  
t i o n s  of t h e  f lat  p l a t s  with bleed o f f .  
po in t  i s  p l o t t e d  f o r  HS2=5/3, which was obtained from t he  so- 
c a l l e d  asymptotic s o l u t i o n  of  t h e  p l a t e  w i t h  cons tan t  bleed- 
off. The following approximation was chosen f o r  t he  ca lcu-  
l a t i o n  t o  provide good approximation f o r  t h e  e n t i r e  range: 

In a d d i t i o n  a da ta  

a. Values obtained from t h e  Har t ree  p r o f i l e s  were approx- 
imated f o r  t h e  range 1.515092H~251.5i?58, which corresponds t o  
the  pressure  increase  range between the  f l a t  p l a t e  and separa-  
t i o n  f o r  Hartree p r o f i l e s .  H32=1.51509 is, the re fo re ,  t he  
separa t ion  boundary. 

b. I n  p lace  of t h e  Hartree p r o f i l e s  of  pressure  decrease 
the similar bleed-off  p r o f i l e s  o f  t he  p l a t e  were used, comple- 
mented by t h e  poin t  of asymptotic bleed o f f .  

Boundary l a y e r s  free of b leed-of f  a r e  charac te r ized  somewhat 
l e s s  accu ra t e ly  t h a t  way. But i n  t h i s  case  accuracy is  of less 
importance. 

T h e  approximations 
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U* = 7,853976 - 10,260551 Ma + 3,418898 I / &  

Fig. 2 The General Boundary Layer-Functions H 1 2 ( H 3 2 ) ,  E * ( H 3 2 )  
and D*(Hs2) in Several Directions. 
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are s u i t a b l e  for genera t ion  of computer programs. 
ference between t h e s e  approximation func t ions  and t h e  approxi-  
mated values is smaller by an o rde r  of magnitude than t h e  d i f -  
fe rence  between t h e  va r ious  boundary l a y e r  p r o f i l e s  being d i s -  
cussed. For c a l c u l a t i o n s  by hand it  35; b e s t  t o  use accu ra t e  
diagrams of t h e  func t ions  (16) t o  ( I  1, which are e a s i l y  ob- 
tained wi th  Table I. 

The d i f -  

/ 2 2 6  The choice made provides  very  good coverage of similar - 
s o l u t i o n s  without b leed-of f  with pres su re  inc rease  t o  t h e  f l a t  
p l a t e  (Blas ius  Flow), as w e l l  as for  similar bleed-off  boundary 
l a y e r s  of t h e  f l a t  p l a t e .  A l l  o the r  c a l c u l a t i o n s  of boundary 
l a y e r s  with t h e  present  method conta in  an  error brought about 
purely by t h e  procedure,  which w i l l  be  explained w i t h  s eve ra l  
examples. 

Table I 

Values of Larllinar Boundary Layer Functions 
H 1 2 ( H 3 2 )  9 E * ( H 3 2 )  and D * ( H 3 2 )  

1.51509 
l,515iS 
1,52099 
1,52638 
1.5.3863 
1,54803 
1.53560 
I.5f82l.t 
1.56771 
i.s;2jm 

I ,60353 
I.02250 
1.h $?BY 
I .6002U 
1,6666i 

4.02922 
! 3,83366 

J.48079 
3,296i3 
3,02095 
2,07178 
2 , i i  I20 
2.M6f)R 
2,63838 
2.591 I O  

2.34f8Li 
2.22429 
2.1 I182 

2.00000 
2.412m.t~ 
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4. Form Parameters, Mall SLearing Stress 8nd Dissipation for 
Turbulent Flow 

Since the laminar boundary layer is easily handled, ac- 
cording to the results in section 3, % corresponding path will 
be followed for solutions of the turbulent layer. 
significant difference will be that shearing stress can no 
longer be expressed through equation (8) in the t3rbulent 
boundary layer. 
ation and the energy transport connected with it additional 
"apparent" shearing stresses occur at first, which call for 
other relations in place of (8). In addition, the velocity 
profiles take on completely different forms so that statement 
(9) dges no longer cover them completely and energy dissipation 
cannot be obtain& the same wry ra  before. 
stress (6) is aot influenced since no turbulence is possible 
and effective in close proxiriry to the wall. 

The only 

As function of the turbulent motions of vari- 

But wall shearing 

So far it has not bccn possible to get useful results for 
the theory of turbulent boundary layers based only on laws 
about the turbulent shearipp stress together with velocity 
statements. But just as we could liberate ourselves, with the 
aid of general Cunctims from the velocity profile,of the boun- 
dary layer in the laminar case so will relations which permit 
calculation of wall shearing stress and energy dissipation froa 
the independent variables,b2 and  IS^, also suffice in the turbu- 
lent case. Such relations for the wall shearing stress were 
stated by Ludwiegand Tillrann 18) as 

for dissipation by Rotta 19). Rotta's result? were used by 
Truckenbrodt [ 7) in simplified form 
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&cb has proven itself w e l l  for t h e  case without bleed-off [ l )  
like the connection of fgrm parameters based on Yieghardt [16) 

The v a l i d i t y  range for equat ions (19) t o  (21)  must be ex- - / 227  
pla ined  i n  more d e t a i l  since for t h e  case of bleed-off  l a r g e r  
form parameter ranges w i l l  again overlap.  A t  first (19) was 
obtained for va lues  of H 1 2  between 1.2 and 2.4, corresponding 
to  H a 2  values  between 1.5 and 1-85  per  equat ion (21). Equa- 
t i o n  (20) also is v a l i d  i n  t h e  same range. No over lap  i n  
range w i l l  be  of concern f o r  t h e  pressure  increase  up t o  sep- 
a r a t i o n ,  which occurs  a t  about Hs2=1.5. But a s t rong  tendency 
t o  high H 3 2  va lues  is present  f o r  t h e  range of pressure  de- 
crease or for b l eed -o f f ,  Pechau [3] has  given examples where 
H 3 2  va lues  from 3 t o  5 were reached, The range of high H 3 2  
values or low H 1 2  values  must,  therefore, be observed sepa- 
r a t e l y .  

A p o s s i b i l i t y  f o r  ex t r apo la t ion  from t h e  Ludwieg-Tillmam 
law is o f fe red  by t h e  following boundary cons idera t ion .  After  
b a n d  6 3  are defined by equat ions (4 )  and ( S )  one g e t s  

13 



8s long as u<U, since t h e  second pa ren thes i s  can be maximized 
with t h e  value of 2.. As long as t h e r e  are no excess  velocities 
present  in t h e  boundary l aye r ,  which is not to  be expected 
without t angen t i a l  blou-off , 

rccording to  statement (11). Based on t h e  same assumption 
H12>l from comparison of (3) and ( 4 ) .  The na ture  of boundary 
l a y e r  p r o f i l e s  leading t o  H32 values near  2 is a l s o  e a s i l y  
grasped. For  ins tance ,  i f  one wants t o  reach 

then f o r  l-u/U=G i n  statement (S), 
OD 

so 
aD 

F i g .  3 Sketch for  t h e  E s t i -  
mates Carr ied Out .  

AS long as G ~ O ,  i .e., as long 
as no excess v e l o c i t y  i s  
present ,  t h i s  would be v a l i d  
if UCE everywhere. T h i s  
s u r e l y  is not t r u e  c lose  t o  

t h e  wall  though. I f  we a s -  
sume, according t o  F i g .  3, 
t h a t  i n  a r ange  c lose  t o  t h e  
wal l  where O=y=y1 a share of 

< <  

6 2 1  is  already present of 
pulse  l o s s  thickness  w h i l e  i z c  , i n  the  rest of t h e  range t h e n  

1 4  



when F, t h e  share  of d i s p I m m ? n t  thickness  61,is o u t s i d e  of y1. 
The left  side of (26) can be estimated a t  t h e  lower limit as 

N ?I 

0 0 0 0 
,*(I -Z) dy > TS(* - il) (3. = /(ii -8) 5 (1 -5) dy +e JIM (1 - ii) dy = (K + E ) & .  (2$) 

where A is probably a cons tan t  d i f f e r e n t  from 0 and smaaPler than 
I. Using estimates (27) and ( a % ) ,  (26) becomes 

F>-f  KA,. 

Whenewer a f i n i t e  & a i  and a f i n i t e  iil is present  for any y e ,  

Hs2 can only go toward t h e  value o f  2 when F-, i . e . ,  when t h e  
share  of displacement thickness  fa r  away from t h e  v i l ,  where 
U<B,  increases  toward i n f i n i t y .  Simultaneously w i t i .  ( Z - H s z ) ,  
( H i 2 - 1 )  also decreases  towards zero because 

- 

/228  Here 1 / 6 2  decreases  t o  0 a t  l e a s t  w i t h  E for 2-H32=~+0, be- - 
cause of ( 3 0 ) ,  w h i l e  F/62 is l imi t ed .  
of (31) decreases toward 0 w i t h  E .  From t h i s  follows 

The entire r i g h t  s i d e  

ORlGINAL PAGE Is 
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This relation is not considered i n  t h e  i n t e r r e l a t i o n s  used so 
fay (compare ( z l ) ) ,  bu t  can be introduced a f t e r  
ChLnges t h a t  are i n  t h e  unce r t a in ty  range of t h e  entire i n t e r -  
'r-t Lation. For b leed-of f  c a l c u l a t i o n s  

small  

is recommended i n  place of statement (21). 

tY 

Fig. Var iw ,  I n t e r r e l a t i o n s  
of Form Parah. . t e r s  H12(H32) 
f o r  a Tur!-t:Zcnt Boundary Layer. 

According t o  Fig. 4 t h e r e  a r e  
h a r d l y a n y d i f f e r e n c e s  between 
(21) and (33). They are ef-  
f e c t i v e  only i n  t h e  v i c i n i t y  
of HS2=2, i n  connection w i t h  
t h e  following der ived bas ic  
laws f o r  wall  shear ing stress. 
Other form parameter func- 
t i o n s  a r e  a l s o  p l o t t e d  i n  
Fig. 4 for t h e  sake of c l a r -  
i t y .  S i g n i f i c a n t  d i f f e rences  
a r e  present  only where H32 
values  a r e  low. While t he  
i n t e r r e l a t i o n  used by 
Truckenbrodt [ 7 J provides 
s l i g h t l y  l a r g e r  values of 
H12, lower values  a r e  gener- 
a t ed  by another i n t e r r e l a t i o n ,  
based on data  by Cornish, f o r  

t he  . n c e r t a i n t y  region. 

4fter ext2nsive c a l c u l a t i o n s  w i t h  a l l  t h ree  e s s e n t i a l l y  
d i f f e r e n t  I n t e r r e l a t i o n s ,  which were p a r t i a l l y  reproduce3 by 
Seyb 1 1 7 1 ,  the  i n t e r r e l a t i o n  (33) was recognized a s  being use- 
f u l  in t he  normal range a s  wel l .  

16 
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Theorem (19) for the wall shear ing  stress can also not be 
extrapolated in t h e  p re sen t  form for bleed-off examples. 
cerding t o  (1') wall shear ing  stress decreases toward zero for 
t l l r+ l  besause of ( 3 0 ) ,  s i n s e  ba increases toward i n f i n i t e .  
This must be  avoided. Apparently, very l a r g e  con t r ibu t ions  of 
F t o  61 or  6 2  must be  a v a i l a b l e  for  smll values of H12*l, de- 
rived Prom t h e  reg ions  bar  away from t h e  wall with very small 
d i f f e r e n c e s  in potential flow. Those regions cannot have any 
infl-nce on the wall shear ing  stress. 
(N), t he re fo re ,  t o  t a k e  care that  t h e  values  far 2-W32=c, 
which increase as I/€, not have any inf luence  on 6s 
done through 

Ac- 

A term must be  added to  

That i.e 

The numerical cons tan ts  i n  t h i s  r e l a t i o n  a r e  f i x e d  SO t h a t  
t h e r e  is t h e  b e s t  poss ib l e  agreement with t h e  wal l  shear ing  
stress theorems used so far. i n  t h e  region of t h e  most fre- 
quent ly  occurr ing values of H12. I n  Fig. 5 t h e  comparison with 
(19) is shown for t h r e e  values  of U62/u vs.  H12. The d i f f e rence  
is apprec iab le  only for va lues  of Hl2 c lose  to  1. For t h a t  
region (19) was not derived. The boundary condi t ion  t r e a t e d  
i n  (34) is represented here.  

A f u r t h e r  comparison of t h e  wall shear ing stress theorems 
is shown i n  F i g .  6. In  add i t ion  t o  (19) l i n e s  according t o  
Rotta [ 9 ]  and Cornish (18) a r e  p l o t t e d .  The new theorem (34)  
i s  not e s s e n t i a l l y  d i f f e r e n t  from t h e  o t h e r s  i n  t h e  normal 
region. The s t r a i g h t  l i n e s  a r e  a l i t t l e  less inc l ined  compared 
t o  (19),which i s  caused by t h e  s l i g h t l y  lower exponent of  t h e  
Re number. That appeared expedient SO as  t o  improve the  agree- 
ment w i t h  Rotta and Cornish f o r  higher Re numbers. 

- /229 
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Equation (2) for dissipation has been very reliable. I t  
can already be seen far the lsllainar case  that the form pram- 
etea has less iafluence on B* than Q I ~  € 9 .  In the turbulent 
case it has so far been completely el ir inatedraccording to 
(20) 

Fig. 5 Turbulent Wall Shearing Stress  as  a Function of H12. 

Fig .  6 Turbulent Wall Shearing Stress  as  a Function o f  Reg2 
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This can only be maintained approximately in the following 
treatment. since dissipation for Hgp*Z or Hla+l must also only 
be dependent en (Ub~/v)~(H~a-l)~ which is checked by means of 
(7). Instead of (20) 

will be used subsequently, where the boundary condition is 
fulfilled and only an insignificant influence of H12 is present 
in the noma1 region. 
tion .has furthermore established that dissipation has less 
influence en the results than shearing stress and that the 
boundary condition is more important than a really exact value. 

(20) 

A large number of co~~parati~e calcula- 

FOX' a l l  nOPPla1 VaIW?S Of Hl2 (35) iS,therefQre,equiWalent to 

5. The Numerical Treatment 

The differential equations (1) and (2) are completely de- 
fined for the laminar and turbulent case, with the relations 
derived in sections 3 and 4, and need only be integrated numer- 
ically. This can be done with known methods. Wherever the 
integration process will be discussed subsequently,it will be 
only to point out various characteristics of the differential 
equations themselwes, which are used advantageously for the 
numerical treatment. Solved according to the derivations of 
the desired functions, equations (1) and (2) are as follows 
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As abbreviatiop the Reynolds number 

Re. = -  
V 

(turbukut) . (41) 

formed with 62 and U 

was introduced. The function W12 (Ha~),needed in (37) and (38). 
is defined by (16), resg. (Zl), E* and B* by (17) and ( l a ) ,  
resp. Table I. 

Equations (36) and (37) are apparently dimensionless since 
velocities or lengths appear only simultaneously in numerator 
and denominator. It is all the same, therefore, in which units 
velocities and lengths are being measured. 
unit for the lengths 1=l and for the velocities Uoo=l ,  both 
chosen to be most suitable for the particular task. 
and velocities can consequently be considered as ratios of the 
chosen units, res@. as functions made dimensionless along with 
the units. This changes nothing in the entire formula system. 
Only in the introduction, for convenience's sake, of the Re 
number formed with the units 

We introduce as 

All lengths 

1.1 "031 Re = -(=-I 
V V 

will in place of (42) 

143) 

be used in the future. 
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The u,fferontial equations (36) and (37) have the fora of 

where the only difference between laminar functions f and g in 
the laminar and turbulent cases is that for wall shearing 
stresses, energy dissipation and form parameterOsonetimes equa- 
tions (381, (40) and (15), and sometimes (39), (41) and (Zl), 
must be used. U(x) and vo(x)  are given functions, dU/dx can 
easily be formed during integration. 

For step-by-step integration Runge's second order method 
is most suitable. With initial values XI, 621, 6 ~ 2 ,  U1, V O I ,  
final values X~=xl+Ax, and analog U;,VO~ given, the differences 
between the desired variables are cttlculated by means of 

For hand calculation little schedules for the calculation /231 - 
of the right-hand sides f and g must be made. Often it will be 
noticed that after the first half-step a repetition of the cal- 
culation will have no significant influence and so this step 
can be eliminated. 

On occasion one will observe another, much more unpleasant, 
characteristic of the solution. Differences fluctuate in a 
strange way rather heavily around the true value, particularly 
when the boundary layers are still thin, as for stagnation 
point flows or i n  the vicinity of an intake. The reason for 
it is that neighboring solutions, to which one turns because of 
inaccuracies or mistakes in rounding o f f ,  tend strongly toward 
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the  desired Solution, p a r t i c u l a r l y  for Ws2. The s tep-by-s tep  
i n t e g r a t i o n  follows, according to  F i g .  7, by going halfway i n  
the d i r e c t i o n  toward the tangent  t o  t he  poizit of depar ture  
then c a l c u l a t i n g  t h e  tangent d i r e c t i o n  and following i n  t h e  
tangent d i r e c t i o n  for conapletion of the  e n t i r e  s t ep .  
neighboring solutions tend too s t rong ly  toward t h e  so lu t ion ,  as 
sketched i n  Fig. 7, t h e  e r r o r  during one s t e p  increases  g r e a t l y .  

When t h e  

The reason f o r  numerical 

i n s t a b i l i t y  is not  based on 

t h i s  p a r t i c u l a r  approach t o  

a s o l u t i o n  but  is cha rac t e r -  

i s t ic  f o r  d i f f e r e n t i a l  equa- 

t i o n s  (36) and (37) and, 

t he re fo re ,  i n  more o r  less 

apparent fashion b u i l t  i n t o  

a l l  previous s t u d i e s  based on 

the  pulse  and energy theorem. 

The b e t t e r  the appl ied numer- 
Fig. 7 Sketch'Of t h e  Numbrical ical method, the mOre the 
I n s t a b i l i t y  Occurring. 

i n s t a b i l i t y  becomes apparent.  

For t h a t  reason alone it was not  discovered i n  the previous 

s t u d i e s .  

I t  is apparent ly  of l i t t l e  use t o  employ a method of  a 

h i g h e r  order ,  l i k e  t h a t  of the  fou r th  degree by Runge-Kutta, t o  

remove t h e  i n s t a b i l i t y ,  In  t h a t  case the  i n s t a b i l i t y  can even 
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greatly incre'ase. 

the aost reliabla, generally applicable,way. 

nmerical calculation is carried aut by hand and one can survey 

not only the) fluctuati~ns but the entire calculatiok constantly 

other paths are open. 

The succsssiwe step decrease bas so far been 

As long as the 

F~QIII time t o  time a check can be made 

whether the initial calculation, far stagnation point or intake, 

for instance, as discussed later, can be further extended. 

Often that can already lead away from the instability reiion 

but it must not be considered as panacea. 

tension of the initial step can lead to serious errors. 

programing instructions for calculations on digital computers, 

which are very suitable for it, checks must be built into 

An uncritical ex- 

When 

every step, for recognition of numerical instability. When 

it occurs only a decrease of the step length is still indi- 

cated, best to half. The required criteria will now be pro- 

. vided, briefly. All other details of  programming need no 

further explanation. We designate a few of the functions that 

occur in the  course of the integration step 
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The excluded possibilities frosl (b) to (e) occw normally any- 

way only in cases that alrehdy fulfil: the condition (a) and 

thus aim for ra stcp decrease. 

check (a) only because they might require [as in (39)] useless 

calculations which would lead t o  a stop of  the computer before 

check (a). Once the step decrease has been programed 3 ' -  s 

They must be recognized before /232 - 

no trouble t o  catch all these absurd cases and t o  chanz 'T 

to step decrease if need be. 

Quite a few other refinements 3f the calculation can be 

achieved through step decrease. For instance, H 3 2  often de- 

creases steeply in the wicinity of separation points, creating 

some inaccuracies with it. This makes it advisable to limit 

the entire contribution to change of H S 2  and to carry out the 

step bisection when 

Naturally, the bisectioned steps are checked again for 

fluctuations of differences that are too strong and bisectioned 

again,if needed. This bisectioning process shvuld be carried 

can at random, a lower limit being set for &=(1/2)"Ax. which, 

in order of magnicude,is 1/1000 of the smallest initially oc- 

curring step size. 

It has been shown that a large number of programming errors can 

be laid to continued step bisectioning. These errors are found 

Going below this limit may stop the program. 
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easiest a f te r  t h e  program is stopped because t h e  s t e p  S . ~ . S  

have become too  small. 

c u l a t i o n  t h e  sea rch  for e r r o r s  would a t  b e s t  be made more d i f -  

f i cu l t ,  since memory l o c a t i o n s  are overwr i t ten  whe: c e r r o r s  

could otherwise be  recognizLu. 

If one were t o  t r y  t o  cont inue che cal- 

%ring b i sec t ion ing  of t h e  examples shown la te r  U and v o  

were l i m a r i l y  i n t e r p o l a t e d ,  i . e . ,  held cons tan t  over t h e  en- 

t i re  i n i t i a l  s t e p  dU/dx, ever! though it  was subdivided i n t o  

perhaps 32 o r  64 p a r t i a l  s t e p s  Zx. 

t h e  s t e p  s i z e  o f  t h e  p a r t i c u l a r  problem was chosen so small 

t h a t  l i n e a r  i n t e r p o l a t i o n  between support ing p o i n t s  i s  mean- 

i n g f u l  w i th in  t h e  context  o f  t h i s  problem. With t h e  in t eg ra -  

t i c n  method chosen i t  l e a d s  t o  a seconcl o rde r  approximation 

when the  output  i n t e r v a l  Ax i s  handled without  b i sec t ion ing .  

A s t e p  decrease is, a f t e r  a l l ,  introduced f o r  e l imina t ion  of 

purely numerical i n s t G b f l i t y  and not f o r  i nc rease  of c a l c u l a -  

t i o n  accuracy. I t  is easiest  t o  inc rease  t h e  number of support  

p o i n t s  i f  t h e r e  is concern about t h e  l i n e a r  i n t e r p o l a t i o n .  

Better i n t e r p o l a t i o n  of  U and dU/dx is not  a p r i n c i p a l  d i f f i -  

c u l t y ,  however. I t  i s  t o  be used w i t h  c a r e  only when dU/dx 

shows nonuniformit ies ,  which happens o f t e n  i n  p r a c t i c e .  

This  is j u s t i f i a b l e  when 

The numerical in tegra t io l i  of  d i f f e r e n t i a l  equat ions has 

now been taken c a r e  o f .  Calcu la t ion  by hand is very simple; 
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just the same it is lore effective t o  program it so as to  ob- 
tain far more voluminous r e su l t  material a t  considerably lower 
cost. 
progruring, which do not become conspicuous during c a l c u l a t i o n  
by hand since there is cons tan t  monitoring of t h e  c a l c u l a t i o n  
flou and imediate in t e rces s ion  when samething is not q u i t e  
normal. 
of the c a l c u l a t i o n ,  at t h e  boundary l a y e r  s h i f t  and a t  t h e  

A feu utters have to be considered, as always during 

Now t h e r e  remain only 8 feu s p e c i a l  cases,at t h e  start 

separa t ion ,  t- be discussed. 

6. I n i t i a l  Values 

The integration of :he f e r e n t i a l  cqu r t ioo  system ( 

(37), so far discussed,  does not assume disappearing va lues  f o r  
U, 62 and 63. These condi t ions  a r e  not  f u l f i l l e d  a t  t h e  start  
of a boundary layer .  The t w o  most important cases are the  
"shockfree approach" of t h e  p o t e n t i a l  flow a t  a 
the  s tagnat ion  poin t  flow. 
boundary a r e  requi red ,  t h e  f i r s t  s t e p s  of t h e  bounthry l aye r  
c a l c u l a t i o n  being e a s i l y  c a r r i e d  out  w i t h  t h e i r  r e s u l t s .  

*p edge and In both cases  consid6 a:ions of t h e  
? 

, 

a. Shockfree Approach 
I 3 

In t h i s  case t h e  boundary flow s t a r t s  w i t h  a U t h a t  does 
not disappear.  
t he  baundary l aye r  then s t a r t s  w i th  disappearing 6 2  and 6 , .  In 
(36) and (37) only those terms w i t h  t h e  smal les t  powers of 6 2  

and iS3 a re  of importance for  small values of d 2 .  If the  o t h e r s  
a r e  neglected then  

I t  is shown through w e l l  known procedures t h a t  
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Equation (46'1 provides a ralue for Has, which is exactly the 
me that 81SO holds true for the plate flow U-constant. 
we h v c  obtained the interrelations of the foru para~etcrs 
(16) and (18) from the similar boundary layers, which contain 
the plate flow, (46) must be fulfilled for the Ha2 value of 
the plate flow, namely Ha~-l.S72S8. That can be checked easily 

for easy calculation of 62 from ( I S ) .  By putring the value of 
E* that belongs to H,2=1.57258 into the equation at the onset 
of flow uhere x=O and U-U,, 

Since 

/ 233 with Table I and the equations (16) and (18). It also serves - 

f x  & a  0.66411 . (47)  

6 1  is a h 0  known through (11) and the equations (36) and (37) 
can be further integrated nurerically. 

b. Stagnation Point 

In the vicinity of the stagnation point U-U'x. It is 
shorn that the functions 6 1  and 6 ,  must be constant for small 
values of x and for v0=0. The well known boundary considera- 
tion then furnishes 

and 

Although the boundary consideration proceeds independent of v d  

during the inflow, v 0 # 0  would change equations (48) and (49). 
But since bleed-off is hardly used in the vicinity of the 

-- - 
*From 4 s .  See [I?]. 



stagaation point it is sufficient to neglect it for at least a 
saall part of the way in initial calculations. 

If the same form parameter interrelations had been used 
for Hs2>l.S7258 as for the similar boundary layers free of 
bleed-offthen (48)  should be fulfilled for the exact value of 
H a 2  at the stagnation point flow, namely H~~=1.'257S, which 
would give 6 2 = 0 . 2 9 2 3 4 / f l .  But since more consideration 
must be paid t o  bleed-off in this region, condition (48) is 
fulfilfed for ( l 6 ) ,  (17) and (18) when H32=1.61998, which lesds 
to 

i 
rn 

62 = 0.29004 

The deviation in 5 2  is unimportant, being less than l%, 
but is more significant in Ha2 since there is no way to compare 
the absolute amounts. 
separation (1,51509) and asymptotic bleed-off at the plate 
(1.66667) the deviation in H 3 p  amounts to 3.85, which is toler- 
able in relation to other methods of approximation. 

When referred SO the Hsz-region between 

This error is, incidentally, a basic one for all methods 
uith one parameter. It stems from the fact that in reality 
different boundary layer profiles can belong t o  the same form 
parameter H 3 2  and so can different values for E* and D*, while 
in this case a special relation was selected. According to a 
suggestion by Seyb [ l ]  one might attempt to use various func- 
tions Hl2, E*  and D* for cases with or without bleed-off. 
That would certainly allow significantly impr,Jed accuracy in 
the handling of many other examples, for instance the stagna- 
tion point flow and also the flat plate with blow-off, which 
is particularly poorly covered in section 8 .  It i s  question- 
able, however, if that will always involve higher accuracy, 
particularly for examples where there is only partial bleed-off. 
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The error at the stagnation point flow may be taken as 
indication 6f the general shortco8ing of the method, even though 
it is problematical to judge the efficiency of a method from 
special examples, Examples with much smaller errors will be 
calculated but soae with considerably larger deviations can 
also be constructed, 
off. In practice it is unimportant but it clearly demonstrates 
the limits of the nethod. 

Such a one is the flat plate with blow- 

7, Boundary Layer Separation, Boundary Layer Shift - 
a. Laminar Separation 

The separation point of the laminar boundary layer is de- 
fined by disappearing wall shearing stress. The disappearing 
wall shearing stress is assigned t o  the value H32=1,515P9, since 
a clear relation between the functions E* and H32 was introduced 
in the present method. 

It is no problem for caXculation by hand to fix the exact 
point where I132 reaches the separation value, either by extrapo- 
lation or by change of step sizes, 

For computer programming there are again certain consider- 
ations,since H32<1.51509 can never be entered into equations 
(16) to (18) because that would lead to root with negative / 2 3 4  
radicand and again to a computer stop. The following method 
has been shown to be the must reliable one. A check is made 
after each half-step whether H9,<1.51509 or H322<1.515C9. 
yes, new valucs for hx must be obtained by the Regula falsi 
(approximation method for obtaining the solution of an equation) 
with the aim to repeat the step with the changed -dx so that in 
the end H322=1.51509+~. If the separation boundary is again 
transgressed after this step the Regula falsi is used again for 

I f  
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calculation of a .somewhat smaller step sire, if Hs2~Z1.51509 
C o l C U h ~ t i o n  is continued. 
partial step that H~~<l.51509+tc. If so then the starting 
point  of the partial step is the Sorinar'separation point. 
%unction E is only a threshold value, which prevents the pro- 
gram from getting lost in a rounding off error. A t  the same 
t h o  the accirracy with which the sepration point is determined 
con tk gauged wigh e. With €10 .5  .IO'' that accuiacy should be 
good enough. 
qaired a t i l  the point of separation is found. 

It only remains to check before each 

With this value very f e w  step decreases are re- 

If the  calculation is not finished after the laminar sepa- 
ration,but continued for the turbulent case, it must be 
remembered that the b x  of the preceding calculation step did 
not result any longer from step bisectioning. In contrast to 
step reduction through stabilization one would not come to the 
final point of the total step if one were to continue the calcu 
lation with the existing Kx. 
between the separation point and the 2nd of the integration 
step is used as Xx after the laminar separation. After that, 
step bisectioning through stabilization is again permissible. 

For that reason the entire piece 

b. Turbulent Separation 

Turbulent separation still presents a big uncertainty 
today. It is generally assumed that separation can occur for 
H32=l.S8 and that it definitely has happened for H32=1.46. 
These boundaries can be considerably extended (upward and down- 
ward) particularly for bleed-off. Fortunately, the uncertain- 
ties are not quite as big as it may appear at first glance from 
the H 3 2  values. According to Seyb 1191, and to one of my inves- 
tigations ( 2 0 1 ,  the turbulent boundary layer does not permit a 
layer gradient any longer, if the value of H 3 2  is permitted to 
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drop below 1.58 (without b l eed -o f f ) .  The result is, conversely,  
t h a t  f o r  H11<1.58 t h e  inf luence  of t h e  pressure  g rad ien t  of t he  
form parameter is very sensitive. In many cases  t h e  change of 
H a 2  in t h a t  region is  SO g r e a t  t h a t  only a small d i s t a n c e  l ies  
between the  two po in t s  a t  which t h e  values  of Ht2-1.58 and 
H~a=l.46 are reached, t h e r e  baing l i t t l e  inf luence  on t h e  p o i n t  
of separa t ion  by t h e  chosen value of t h e  sepa ra t ion  p a r m e t e r .  
For bleed-of f ,  however, t h e  inrluence of t he  amount b led  off 
is q u i t e  cri t ical ,  SO t h a t  one can s t a y  on t h e  s a f e  s i d e  wi th-  
out much a d d i t i o n a l  b leed-of f .  

A l l  t h e  examples shown here  were ca l cu la t ed  up t o  the  
value of H~2'1.46. A dec i s ion  must be made i n  each case  
whether another separa t ion  c r i t e r i o n  would have had s i g n i f i c a n t  
inf luence.  

The loca t ion  of t h e  poin t  where Hs2=1.46 is reduced can be 
exac t ly  as i n  t h e  laminar case ,  bu t  t h e  check a f t e r  t h e  f i r s t  
h a l f - s t e p  can be  el iminated s ince  no s top  of t h e  computer oc- 
curred even f o r  Ht2~1.46 .  

Reasons f o r  cont inua t ion  of  t he  c a l c u l a t i o n  may remain 
even a l t e r  t he  tu rbu len t  s epa ra t ion ,  but  t h e  size of t h e  r e -  
maining s t e p  must t h e n  be readjusted.  O f t e n  t he  f r i c t i o n  drag, 
a f t e r  Squire and Young (211,is ca l cu la t ed  a f t e r  a boundary layer  
c a l c u l a t i o n .  T h i s  formula i s  v a l i d  only up t o  the  separa t ion  
po in t ,  of course.  For technica l  reasons o f  programming i t  is  
s impler ,  however, n o t  t o  c a l c u l a t e  the  drag p a r t  immediately 

5 1 11,. 
a t  t h e  separa t ion  p o i n t  b u t  t h r o u g h  

4: . (;,I) a 4, 

t o  provide f o r  cont inua t ion  of the c a l c u l a t i o n  a f t e r  the  sepa- 
r a t i o n ,  i n  a way t h a t  leaves t h e  drag a f t e r  Squire-Young 
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c. Bouabry Layer S h i f t  

The houndary layer shift is  considered i n  t h e  present  
mth& simply by usin8 s q w i o n s  (33) and (35),instead - of 

/235 (ia) boa calculations from a certain point 011. A - 
ea increase in Ha8 rQ t h e  sbPdt point, as was requi red  i n  . 

o t h e r  meads t o  saqr~ extent [ i l ,  is eliminkted. bter  on 
the examples w i l l  show t h a t  in most cases, but not ~ ~ W B L Y S ,  a 
s t rong  increase i n  H S P  occurs  after t h e  s h i f t ,  I t  seems s i g -  
n i f i c a n t  t h a t  this i nc rease  is t h e  r e s u l t  of t h e  r e l a t i o n s  
used only and must not be introduced a r t i f i c i a l l y ,  Those cases  
where no r ap id  increase  of H g 2  occurs appear a l s o  of importance 
i n  p r a c t i c e ,  which is pointed o u t  during d i scuss ion  of t h e  ex- 
amples. 

Where t h e  s h i f t  takes p lace  i s  of no s p e c i a l  re levance t o  
, t h e  method discussed.  I t  should be pointed o u t ,  however, t h a t  
t h e  most var ied  s h i f t  condi t ions  can be introduced i n  a simple 
manner. The laminar s epa ra t ion  poin t  w i l l  be introduced as 
t he  l a t e s t  s h i f t  po in t .  
tice t o  continue t h e  c a l c u l a t i o n  from the  laminar separa t ion  
poin t  on p r i n c i p l e  a s  f o r  t h e  turbulen t  case.  Additional 
simple s h i f t  condi t ions  t h a t  a r e  o f t e n  used are  s h i f t  when 

It has been shown t o  be a good prac-  

or 

C 
u 2  - u1 - 0 
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That B L ~ Q ~ S  shift art mmiaaimtlm pres5ure. A difference between 
(UBl) and (UB2) exists only when U is constant over a finite 
distance. The transition from (UBl) to (UB2) permits calcula- 
tion of the influence, in this case 
of the shift point from the end to the beginning of the distance 
wbtbconstant velocity. This influence is iraportant for laslinar 
profiles. 
pzessions in the polar diagram. 

of the advancing migration 

It determines the depth of the so-called laminar de- 

~t wiil be important for m a y  calculations to consider 
the instability-of the laminar boundary layer. 
mainly on the form parameter and on the Re number. 
ob various stability calculations are plotted in Fig. 8. There 1236 
is some dispersion, depending on the exact shape of the boun- 
dary layer profiles on which they are based. The boundary of 
stability is higher, for instance, according to the mean by 
Ulrich [22],for the Iglisch-profiles of homogeneous bleed-off 
than, according to Pretsch [23],for the Hartree-profiles. A 
certain amount of dispersion is contained in the n. .thods of 
calculation as well 
the stability boundary of the so-called Blasius-profile, which 
is mentioned in both categories as a special case. 
[6] carried out a rough interpolation for his calculated values, 
therefore, which has been included in Fig. 8. 

It depends 
The results 

because two different values are given for 

Wieghardt 

The stability boundary alone does not suffice for predeter- 
mination of the shifting point, however, since a certain dis- 
tance is always required between the onset of instability and 
the shift. The unstable waves must reinforce themselves con- 
siderably at first until their amplitude is sufficient for the 
shift over into the completely irregular turbulent motion. 
During this unstable interval of operation 6 2  usually increases 
to such an extent that the motion moves, in Fig. 8, from the 
stability boundary away upward, becoming more unstable. For 
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#I Constant % O m  paX%#l@?tea, 
t h e  Blasius flow fo r  instance, 
only  6 2  w i l l  i nc rease  b u t  i n  
many cases of p res su re  i n -  
crease a decrease  of Hg2 w i l l  
accompany t h e  inc rease  i n  6 2 .  

The s h i f t  w i l l  t a k e  p l ace ,  
t he re fo re ,  somewhere above 
t h e  s t a b i l i t y  Boundary i n  
Fig. 8 wi th  t h e  degree of 
tu rbulence  of t h e  o u t s i d e  
flow and t h e  wall roughness 
p lay ing  a c e r t a i n  role, of 
course  . 

Experiments provide a 
c e r t a i n  i n d i c a t i o n  about t h e  
p r a c t i c a l  occurrence of t h e  
s h i f t  f o r  t h e  least d i s t u r -  

Fig. 8 Theore t i ca l  I n s t a b i l i t y  bance of flow and the 
Boundaries, Experimentally De- 
termined Data for Boundary wall. Some experimental  re- 
Layer-Shif t  and Introduced 
S h i f t  Conditions.  s u l t s  have been en tered  i n  

Fig.  8 f o r  t h a t  reason. 
Schubauer and Skramstad E241 made t h e i r  c a r e f u l  experiments 
with t h e  f l a t  p l a t e ,  i .e.,  without a change i n  t h e  form param- 
eter. Granv i l l e  [ a s ]  i nves t iga t ed  t h e  s h i f t  f o r  laminar pro- 
f i l e s  and found a r a t h e r  clear r e l a t i o n  f o r  t h e  d i f f e r e n c e  i n  
R e  numbers f o r  i n s t a b i l i t y  and s h i f t  and t h e  mean form param- 
eter during t h e  uns tab le  i n t e r v a l  of  opera t ion .  

By exchanging t h e  mean form parameter w i t h  t h a t  a t  t h e  s h i f t  
p o i n t ,  which i s , s t r i c t l y  speaking,only c o r r e c t  f o r  a cons tan t  
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fora paraaster, data points from Granville can be plotted in 
Fig. 8. This was done only for two characteristic values. More 
recent experiments by Raspet [26],  for free flight for instance, 
show that the shift occurs even later for smaller Re numbers. 
Two data points from RaSpet'S experiment are plotted in Fig. 8. 
On the other hand, it must be expected that the region of high 
We numbers and, with it, high form parameter values can only be 
reached through bleed-off. The relation between H32 and 6 2  may 
change completely in that case. 
proceed in such a way that the motion takes place always along 
the instability boundary (see examples in section 8) or paraf- 
le1 to it so that there is no move away from the boundary of 
stability during the unstable interval of operation in Fig. 8. 
It muse at least be taken into account that the shift takes 
glace close to the boundary there. For that reason the straight 
line plotted in Fig. 8 

For example, bleed-off may 

In Re62 > 34.2 1132 - 46.78 CUB31 

is recommended as shift condition if one wants to hit the shift 
approximately as it occurs in practice. But if a certein pre- 
vention of the shift is required then the also plotted straight 
1 ine 

In Re62 > 34.2 H32 - 47.81 lue9 

is used. If no shift appears in a calculation with this condi- 
tion 
also 

then one can be reasonably sure that the experiment will 
remain laminar. 

/237  The choice remains, of course, t o  introduce different - 
shift conditions. Each coidition introduced will normally be 
checked before the calculation of an integration step. An 
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exact check is not necessary for hand calculations until it 
becomes apparent that the boundary is being approached. 

8. A Few Bleed-Off Theorems 

The principal boundary layer data can be calculated with 
the methods described, when the normal velocity V O ( X )  is given 
in addition to the always provided functions Re and U(x). 
Often it is also the other way around, namely vo(x) is to be 
calculated so that the boundary layer will fulfill certain 
conditions; for instance, the prevention of shift of the boun- 
dary layer or of the separation of the turbulent boundary 
layer, 

This problem is also solved easily with the equations de- 

Several different aims of bleed-off are jointly at- 
scribed and with the associated methods of calculation and 
programs, 
tained when the requirement is to fix the bleed-off velocity 
vo so that 

Constant H 3 2  for the laminar and for the turbulent case is 
designated by b-0. But if one chooses a=1.40, b=0.2924, then 
one is always right below the condition for certain shift in 
the laminary case of Fig. 8 and so prevents the boundary 
layer shift. In the turbulent case there are also a few possi- 
bilities with b#O, which are explained through examples. 

Using (llj in (51) we get 

and through derivation 
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With t h e s e  two r e l a t i o n s  t h e  func t ions  6 3 ,  dd3/dx and d62/dx 
can be el iminated from (36) and (37) and one g e t s  

Th i s  makes vg a func t ion  of dU/dx and 62; wi th  62 one a l s o  g e t s  
H32 because of (51) arrd t h e  requi red  boundary l a y e r  func t ions  
can be c a l c u l a t e d  as before .  
the change of 62, given with (36), is requ i r ed  and t h e  d i f f e r -  
e n t i a l  equat ion (37) is not  needed. This  e x a c t l y  corresponds 
t o  t h e  accepted procedure.  as given by Wieghardt [ 6 ] ,  f o r  
ins tance .  

For continued c a l c u l a t i o n  only 

This procedure does r equ i r e ,  however, t h a t  t h e  equat ion  
be a l r eady  f u l f i l l e d  a t  t h e  spo t  where t h e  c a l c u l s t i o n  wi th  
t h e  bleed o f f  theorem (51) i s  t o  s t a r t .  But normally,values 
f o r  t h e  p a i r  o f  func t ions  62, H 3 2 y  are a l ready  p r e s e n t  from a 
previous c a l c u l a t i o n  a t  t h a t  s t a r t i n g  po in t ,  which may not  be 
compatible with (51).  That d i f f i c u l t y  can be e l imina ted  by 
t r e a t i n g  ( 5 4 )  and (51 )  t oge the r  only as a d d i t i o n a l  equat ion 
t o  vo(62) and by car ry ingout  t h e  a c t u a l  boundary l a y e r  ca l cu -  
l a t i o n  aga ia  w i t h  t h e  two equat ions  (36) and (37), w i t h  no need 
f o r  agreement between t h e  H 3 2  used and +. Because t h i s  pro- 
cedure uses t h e  b leed-of f  thvorem only f o r  vo  and not  f o r  I4329 
i t  is ques t ionable  whether and how f a s t  H 3 2 ,  which  i s  generated 
i n  the  course of t he  c a l c u l a t i o n ,  adapts  i t s e l f  t o  t h e  value of 
+ per  ( 5 1 ) .  As t h e  examples w i l l  show, t h a t  happens very well 
and r a t h e r  quickly.  

This  procedure does r e q u i r e  a b i t  more c a l c u l a t i o n  e f f o r t  
than t h a t  by Wieghardt, s i n c e  boundary l a y e r  func t ions  f o r  t h e  
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values $ a id  H32 must be ca l cu la t ed .  
are no% equal t h i s  double calculation cannot be m..'-ded. 
c a l c u l a t i n g  by hand equat ion  (37) can be dropped as soon as 
t h e r e  is c l o s e  enough proximity between $ and HS2. 
gramming t h i s  t r a n s i t i o n  is not  necessary.  
program i n  its o l d  form, which i s  b e n e f i c i a l  for func t iona l  
c l a r i t y .  Poss ib le  time savings  i n  c a l c u l a t i o n  do not  j u s t i f y '  
t h e  e f f o r t  :nvolved. Besides, t h e  cond i t ion  VOSO is p o s s i b l e  
f o r  the-recommended method, which is appropr i a t e  t o  many proh- 
lems. 
off theorem r e a l l y  r e q u i r e s  i t  and not  when, for in s t ance ,  
t h e  boundary l a y e r  i s  brought t o  t h e  edge of t h e  s t a b i l i t y  
boundary a r t i f i c i a l l y ,  through blow-off,when normally i t  
would s t i l l  b e  f a r  away 

As long as t h e  two values 
When 

For pro-  
This keeps t h e  

According to  it  bleed-off t a k e s  p l ace  only when t h e  bleed 

perhaps near t h e  s t agna t ion  po in t .  

/238 9 .  Examples - 

I t  should aga in  be pointed o u t  t h a t  t h e  u n i t  of l eng th  i n  
a l l  following examples is t h a t  which is  a l s o  used i n  t he  
Reynolds number Re, according t o  equat ion  (43).  The same 
holds  t rue f o r  t h e  u n i t  o f  ve loc i ty .  
duce t h e  des igna t ions  1 and U, l a t e r  f o r  t h e  u n i t s ,  then a l l  
func t ions  would have t o  be represented  as r a t io s  t o  these  u n i t s .  
But t h a t  i s  superf luous.  The only th inq  t o  be kept  i n  mind is 

t h a t  f o r  x = l  t h e  u n i t  o f  length ,  1, is  meant, from (43 ) ,  which 
can a l s o  be designated as 1; t h e  same i s  t rue  f u r  a l l  v e l o c i -  
t ies.  

I f  one wanted t o  re intro-  

a .  Parabola-shaped Veloci ty  D i s t r i b u t i o n  f u r  Different 
S t e p  Sites 

To provide an example fo r  the  inf luence  of l i n e a r  in te rpo-  
l a t i o n  on U w i t h i n  one i n t e g r a t i o n  s t e p ,  t h e  curved d i s t r i b u -  
t i o n  U ( X ) = X ( ~ - X )  for Re=106 w i t h  widely varying s t e p  sizes was 
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OHIGINAL PAGE IS 
OF POOR Q U m  

Fig. 9 Inf luence of S tep  S i z e  on Pulse Loss 

X -c 

Thickness & a  

ca lcu la ted .  Consecutively,Ax=l ,O.5,0.2,0.1,0.02 and 0.01 was 

chosen. Resu l t s  f o r  t h e  four  b igges t  s t e p  sizes are shown i n  

Fig. 9 .  The comparison was demonstrated only on 8 2 .  The e r r o r s  

i n  H g 2  are  smaller. The  d a t a  p o i n t s  for U used and those ca lcu-  

l a t e d  f o r  6 2  were always jo ined  by s t r a i g h t  l i n e s  t o  cha rac t e r -  

i z e  t h e  s t e p  size.  The e f f e c t  o f  decreasing Ax t o  below t h e  

value of  0 . 1  can no longer  be shown g raph ica l ly .  

reason t h e  r e s u l t s  were put  toge ther  i n  Table 11 f o r  t h e  two 

po in t s  x=1  and ~11.6 with t h e i r  e r r o r s .  

/ 2 3 9  - 

For t h a t  
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The step s ize  0.1 already s k  good resul ts  when a to ta l  
of only s i x t e e n  steps is counted i n  t h e  i n t e r v a l ,  But gross 
errors rust be  expected when t h e  v e l o c i t y  inc rease  is l i n e a r i z e d  
teo roughly and t h e  stagnation po in t  s o l u t i o n  too far extended, 
which often happens, 

Table I1 

Pulse Loss Thickness for U=x[Z-x), Re-106 for x-1 and 
IC-1.6 as Ftmctioas of Step  Size 

b, Howarth-Flow with  Turbulent Continuation 

The v e l o c i t y  d i s t r i b u t i o n  U(x)-l was t r e a t e d  r igo rous ly  by 
Howarth (27) and recalculated accura t e ly  by Leigh (28). This 
c a l c u l a t i o n  o f t e n  served for comparisons wi th  t h e  results from 
approximation methods (Walt [SI, for ins tance) .  I n  p a r t i c u l a r  
t he  point of laminar sepa ra t ion  is very c r i t i ca l  and could 
here tofore  not be ca lcu la t ed  with s a t i s f a c t o r y  accuracy by ap- 
proximatinn methods. 
produce an error t h a t  is smaller by an  order  of magnitude. 
graphic corparisolr w i t h  t h e  exac t  s o l u t i o n  is no longer pos- 
s i b l e  b e q u s e  the  l i n e s  do not provide s u f f i c i e n t  d i f f e r e n c e  
for it. Numerical values fo r  t h e  sepa ra t ion  po in t  are shown 
for  various metho,.s i n  Table 111. I t  comes as s u r p r i s e  t h a t  
the  present  procedure o f f e r s  much b e t t e r  r e s u l t s  t h a n  t h a t  by 
Walz even though t h e  bas i c  equat ions and t h e  boundary l i n e  
p r o f i l e s  on which func t ions  H r z ,  E* and D* are based sre t h e  
same ones fo r  t h e  laminar case.  As inentioced before ,  i t  was 
found t h a t  t h e  func t ions  used by Walz had been i n c o r r e c t l y  

The equat ions and func t ions  now a v a i l a b l e  
A 
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Table 111 

Separat ion Point  for Howarth-Flow i n  Various Directions 

Procedure 
X Error 

(Separation) t 

Houart b- Le ig b 
Pohlhausen PI  . 
h h l b a u s e n  wi th  Hartree p r o f i l e s  
w.12 wi th  Pohlhausen P4 
U a l z  wi th  Hartree p r o f i l e s  
Wieghardt 2 parameter method 
Cijrtler (d i f fe rence  method) 
Pre l .  method wi th  Walz-Hartree funct ion  
Pre l .  method v i t h  new Hartree func t ions  

AX=o -01 
Ax=0.302 

0 , 1198 
0.16 
0.103 
8.125 
0.114 
0.116 
0.1183 
0,1137 

0.1202 
0.1199 

0.0 
33.0 
14.2 

4.2 
5 .o 
3.3 
1.2 
5 -0  

0.4 
0.1 

ca lcu la ted .  With the  i n t e r r e l a t i o n s  for Hs2, E* and D* used 
by Wal? t h e  same r e s u l t s  a r e  achieved here  as the re ,  with t h e  
present  formulas, Fur ther  improvement can only be a t t r i b u t e d  
to  accura te  eva lua t ion  of t h e  Hartree p r o f i l e s .  
statereilt by Ualz is s i g n i f i c a n t l y  b e t t e r ,  t he re fo re ,  as can 
be concluded from t h e  r e s u l t s  up t o  now. 

The a c t u a l  

Fig. 10 also g ives  t h e  curve of t h e  form parameter H 3 2  f o r  
var ious R e  numbers. The laminar separa t ion  poin t  was here 
assumed as  s h i f t  point .  In t h e  laminar p a r t  H 3 2  is  independent 
of R e ,  which can a l ready  b e  deduced from t h e  bas i c  equat ions,  
but t h a t  is  no t  true i n  t h e  tu rbulen t  p a r t .  In Fig. 10 it can 
be c l e a r l y  recognized how H 3 2  increases r ap id ly  w i t h  t h e  h i g h e r  
Re numbers a f t e r  t h e  s h i f t ,  a t  approximately t h e  r a t e  a t  which 
Truckenbrodt [ 7 ]  introduced i t  a r t i f i c a l l y .  But f o r  smaller  
R e  numbers t h e  jump does not occur. Here H 3 2  s t i l l  moves f o r  
awhile a f t e r  t h e  s h i f t  i n  t h e  region H32q1.58, where separa t ion  
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i s  a l r e a d y  p o s s i b l e .  T h i s  r e s u l t  a g r e e s  w i t h  t h e  o b s e r v a t i o n  
t h a t  loca l  s e p a r a t i o n  i s  o f t e n  f o u n d  [ 2 9 )  b e f o r e  t h e  b o u n d a r y  
s h i f t ,  f o r  smaller Re Lumbers .  A c c o r d i n g  t o  F i g .  1 0 ,  t h e  
reason for  t h i s  s e p a r a t i o n  b u b b l e  must  riot o n l y  b e  s o u g h t  i n  
t h e  i n s u f f i c i e n c y  o f  e x c i t e m e n t  o f  t h e  u n s t a b l e  d i s t u r b a n c e s ,  
b u t  a l s o  i n  t h e  too slow f o r m a t i o n  of t h e  t u r b u l e n t  b o u n d a r y  
l a y e r  a n d  w i t h  i t  t h e  r emova l  of flow r e v e r s a l  d a n g e r  a t  t h e  
wall fo r  t h i s  r a n g e  of Re number a n d  form p a r a m e t e r .  

Add i t iona l  calculat ions w i t h  u n i n f l u e n c e d  t u r b u l e n t  boun-  
d a r y  l a y e r s  h a v e  a l r e a d y  b e e n  c a r r i e d  o u t  i n  l a r g e  numhers ,  
a l s o  c o m p a r i s o n s  w i t h  e x p e r i m e n t s .  Two o f  t h e s e  c o m p a r i s o n s  
h a v e  b e e n  p u b l i s h e d  p r e v i o u s l y  (J.41. T h e r e  i t  i s  shown,  i n  
p a r t i c u l a r  t h a t  thc i n c r e a s e  of 6 2 ,  a c c o r d i n g  t o  t h e  much 
a p p l i e d  method by T r u c k e n b r o d t  f o r  t h e  a r ea  o f  h i g h  p r e s s u r e  
i n c r e a s e ,  seems too  small w h i l e  b e t t e r  v a l u e s  a r e  a c h i e v e d  
w i t h  t h e  e q u a t i o n s  p r e s e n t e d  h e r e .  One c o n s i d e r a b l e  improve -  
ment  of T r u c k e n b r o d t ' s  m e t h o d , m e r t i o n e d  by  S c h o l z  [ 101, d o e s  
correct t h e  s h o r t c o m i n g  f o r  t h e  p r e s s u r e  i n c r e a s e  i n  t h e  t u r h u -  
l e n t  r e g i o n  b u t  g e n e r a l i z a t i o n  o f  t h i s  improvement  f o r  t h c  
l a m i n a r  case a n d  f o r  b l e e d - 3 f f  h a s  n o t  b e e n  t r i e d  s o  f a r .  

/ 2 4 0  

c .  Laminar P l a t e  F l o w  t c i t h  flomogeneous Blced-Off  a n d  
B l o w - O f  t ---- 

A f u r t h e r  c l a s s i c a l  e x a m p l e ,  f o r  xhich a n  exac t  s o l u t i o n  
i s  a v a i l a h l c ,  i s  t h e  f l a t  p l a t e  11=1, w i t h  c o n s t a n t  h l c e d - o f f  
V O .  The r e c a l c u l a t i o n  of t h i s  c a s e ,  which  is shown i n  F i g .  
11, a l s o  p r o v i d c l ;  v e r y  a c c u r a t e  r e s u l t s .  Is1 i s c h ' s  [.W] s o l u -  / 2 4 1  -__ 

t i o n  a g r e e s  in 5 2  a l m o s t  c o m p l c t c l y  u i t h  t h c  p r c w n t  one,  
t h e r e  h c i n g  o n l y  i n s i g n i  f i c a n t  d i  f f c r c n c c s  f o r  f 1 3 1 .  '1'0 achicvc)  
s u c h  good a g r c c m c n t  thc s t ep  size of  thc f i r s t  s t c p  .\s, \chicti 
i s  c a l c u l a t e d  , c i t h o u t  h l c c d - o f f  hcrc ,  must h c  h c p t  very s m a l l  



Fig. 10 
tinuation f o r  d i f f erent  Re numbers. 

Form Parameter H32 for  Howard-flow U = l  and i t s  Con- 

Fig.  11 
Plate Flow w i t h  Constant Bleed-Off and Blow-Off. 
v ~ = _ + o . O o l .  

Form Parameter H j 2  and Pulse Loss Thickness 6 2  for 
Re=lO , 
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s i n c e  t h e  inf luence  of  bleed-of f  is p a r t i c u l a r l y  s i g n i f i c a n t  
t h e r e  . 

For comparison, t h e  lengths  t h a t  were made dimensionless 
by I g l i s c h  a r e  r eca l cu la t ed ,  In  t h e  func t ion  used t h e r e  

only t h e  R e  number need t o  be  introduced,per (43), along wi th  
t h e  u n i t s  1 and U,; t h e  i n t e r r e l a t i o n  between t h e  values  chosen 
here  f o r  vg and Re,  a n d t a n d  X, can then e a s i l y  be e s t ab l i shed .  
%he same holds for func t ion  

The same case of p l a t e  flow but  with p o s i t i v e  v o ,  i.e., 
blow off, i s  shown a l s o  i n  Fig.  11. As i n  a l l  approximation 
methods, laminar s epa ra t ion  occurs f o r  x=0.4, which cannot 
occur for r igorous t reatment .  That is t h e  case mentioned i n  
sec t ion  S(b) i n  which t h e  present  method doe5 not work too  w e l l ,  
In  p r a c t i c e  i t  is  unimportant s ince  t h e  blow-off p r o f i l e s  a r e  
anyway very uns tab le  and boundary l aye r  s h i f t  cannot be avoided 
here. S t i l l ,  it may se rve  as an example of how l i t t l e  s i g n i f i -  
cance errors found i n  s p e c i a l  cases  have f o r  t h e  e n t i r e  method. 
As f a r  as t h e  laminar p a r t  is  concerned i n  t h e  present  method, 
i t  must be concluded from r e s u l t s  up til now t h a t  it o f f e r s  
very good r e s u l t s  when pressure  increase  without b leed-of f  o r  
bleed-off  t o  h i g h  va lues  of  H32 i s  involved. T h i s  exac t ly  
corresponds t o  the  choice of func t ions  H12, E *  and D*, made 
i n  s ec t ion  3. For more d e t a i l e d  inves t iga t ions  of e r r o r s  we 
refer t o  N i c k e l  [31]. 
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d. Plate Bleed-Off with Constant Form Parameter 

In Fig. 1 2  t h e  d i s t r i b u t i o n s  62(x) and V O ( X )  f o r  t h e  f l a t  
p l a t e  wi th  cons tan t  form parameter, which have been obtained 
wi th  t h e  present  method, are compared wi th  the  exac t  so lu t ions .  
Again very good r e s u l t s  are generated f o r  H32>1.57258. That is 
only n a t u r a l  because t h e  form parameter i n t e r r e l a t i o n  was taken 
from t h e  corresponding exac t  so lu t ions .  On t h e  o t h e r  hand f o r  
blow-off, i .e.,  f o r  H 3 2  values  below 1.57258, r e s u l t s  would be 
somewhat worse because for  t h a t  region o t h e r  i n p e r r e l a t i o n s  for  
form parameters were chosen. Since blow-off is not  allowed in 
t h e  programs used here ,  f o r  reasons a l ready  mentioned i n  sec- 
t i o n  8, blow-off cases of t h e  "similar" p l a t e  flow (anyway 
again l a r g e l y  uns tab le)  were not ca l cu la t ed .  

/ 2 4 2  - 

Fig. 12 Recalculat ion of  Bleed Off Veloci ty  vo f o r  S imi la r  
Bleed-Off Boundary Layers a t  U=const. ,  Re=106.  
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e. Bleed-Off of Laminar Boundary Layer for Strong Pres- 
sure Increase 

An important azea of application for bleed-off is the 
prevention of boundary separation, for instance on air foils 
with high lift coefficients. 
subsequently, long and strong pressure increases occur on the 
topside. To get an owerall picture for the bleed-off required 
in such cases a large number of  salculations were carried out 
for a velocity distribution composed of  linear sections, shown 
in Fig. 13. The pressure increase in the distribution on which 
it is based goes from U=:$ to U=0.4, thus attaining a value that 
could never be overcome without bleed-off. This order of 
magnitude approximately corresponds to what occurs on air foils 
with very high lift coefficients (between 3 and 5 ) .  

Large negative pressures and, 

Fig. 13 Quantity Coefficient co and Plus Loss Thickness 6 2  
for Strong Pressure Increase and Form Parameter of the Laminar 
Boundary Layer, H32, Being Constant; R = 2.106. 

In F i g .  13, as well as in the following Figs. 14-16, the 
function 

X . 
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is used throughout in place of VO, in addition to 6 2  and H32. 
This function offers a better overall picture than vo itself 
since the total amount of bleed-off is more important. 
trailing edge E agrees with the often used quantity coeffi- 
cient c before that C provides the amount of bleed-off 
needed up to a point x while -VO is proportional to the slope 
of curve C 

At the 

Q 
Q' Q 

Q' 

A simple method for preventing separation is holding the 
form parameter constant through appropriate bleed-off. 
bleed-off calculation can be carried out for laminar or turbu- 
lent cases by means of ( 5 4 ) ,  setting b=O. At first the laminar 
boundary layer was calculated for various form factors, without 
consideration of instability and shift. The resulting values 
for 6 2  and c are shown in Fig. 13. At first glance the re- 
sult is surprising. One suspects at first that bleed-off to 
high H 3 2  values should be much stronger and give correspond- 
ingly smaller values for 62. The calculation offers for x=l 
values of C that differ very little, while 62 is high for 
high H 3 2  values and low for low ones, the exact opposite of 
what is expected offhand. Only at the start of the calculation 
does the picture correspond to expectation. As soon as  this 
condition has become pranounced a smaller 6 2  occurs because of 
( 5 4 ) ,  in consequence (and because of the larger E*) a larger 
d 6 2 / d x  with the increase in 6 2  predominating, so that the pic- 
ture is quite reversed in the end. The reversal is easily 
recognized when ( 5 4 )  is entered into (36), b=O and H32=+. 
This results in 

This 

Q 

Q 

/243 

The first term, which is not dependent on 62dU/dx, actually 
gives a smaller d 6 2 / d x  with increasing H 3 2  since the numerator 
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decreases and the denominator increases, according t o  Fig. 2. 
The second term shows the opposite tendency. Since 6 2  is in 
the denominator of the first term, but in the numerator of the 
second one, the character of  Fig. 13 is easily understood. 
The second term predominates as soon as 6 2  has become larger. 
Since d 2  a l so  goes into vo  the lines for diverge later, but 
much less so than those for 6 2 .  

Q 

During prevention of the separation the required anount 
of bleed-off is predominant while 6 2  only goes into the resis- 
tance (anyway quite high for high life coefficients). Ac- 
cording t o  Fig. 13,tAe walue of the form parameter,up to which 
bleed-off takes place,does not have any big influence on the 
amount of  bleed-off. 

That result is important because it shows that stability 
of  the laminar boundary layer, which increases strongly with 
H32, can be obtained even for strong increases of  pressure 
without 8 very large amount of bleed-off. 
another calculation where two pairs a,b, are entered into ( 5 4 ) .  
For case (A) ~ 1 . 4 0 ,  b=0.02924,was chosen so that the region 
below the strict shift condition in Fig. 8 not be exceeded, 
while case (B): 4 . 3 7 ,  b=O.O2924,permits the region to 
the upper straight line in Fig. 8, along which shift may al- 
ready be expected. The results shown in Fig. 14 again demon- 
strate very small differences for C but bigger ones for H 3 2  
and & 2 .  

This a l s o  confirms 

Q’ 

Particular attention is called to H32 having a maximum. 
That points to a maximum of Re62, which is a function of the 
strong increase of U. In case (B) even 6 2  has a maximum, 
Since - V O  also becomes very big, along with function (l/U)dU/dx 
a t  around x=l, 62 does not continue to increase here any longer. 
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F i g .  14 Quantity Coeff ic ient  c , Form Parameter H32 and 

2 . 1 0 6 - - ( A )  Bleedoff for Certain Prevention of  S h i f t ;  ( B )  Fre- 
vention o f  S h i f t  no Longer Certain. 

Pulse Loss Thickness 62, for S t  s ong Pressure Increase, R e  = 

By putting ( 5 4 )  into ( 3 6 )  a c loser  picture can be obtained 

here too.  
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f. Bleed-Off of the Turbulent Boundary Layer at Strong 
Pressure Increase 

Since it is often not easy to maintain the boundary 
layer laminar with certainty, various attempts have been made 
recently to bleed-off the boundary layer so that no separation 
could occur [ 2 ] .  To get some indication about how correct 
and rational such bleed-off is, some examples of turbulent 
boundary layers were calculated also for the velocity d i s -  
tribution of the previous examples. 

/ 244 - 

Here, too, it is again easiest to start calculating with 
constant form parameter. The resulting values for c are 
shown in Fig. 1 5 .  Bleed-off starts a little later than for 
the laminar cases because there is a wait for the shift. 
Compared to the laminar cases the picture shows a complete 
shift. The c lines show surprising overlapping. For smaller 
HS2 values they seem to be more favorable. Later on the per- 
mitted increase of b p  during the initially small vo takes its 
toll with bleed-off amounts that can hardly be realized. 
The high values for H32 on the other hand are very high at 
the start with the required bleed-off. 
with a value of H32=l.95 is most favorable in the end, the 
case appears unfavorable when compared to laminarity. The 
impression is gained therefore, at first, as if turbulent 
bleed-off is much less favorable. A series of additional 
calculation of samples shows, however, that the difference 
need not be so great. Apparently, bleed-off must be carried 
out with variable form paramter so that at first the values 
for H32 are small, increasing later on. For that reason ( 5 4 )  

was used for the calculation and constants a,b set so that 
for , 

Q 

Q 

Even though bleed-off 
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In Res2 = 10(Re62z2000) H32 = 1.95,  

and for 

In Re6 = 6(Re62z400) H 3 2  1.95 + k. 
2 

That results in 

a = 1.95 + 2.5 k b = -0.25 k. (57) 

Fig. 
f o r  
of  t 

15 Quantity Coeff ic ien t  c and Pulse  Loss Thickness 6 2  
Strong Pressure Increase an 8 Constant Form Parameter H32 
he Turbulent Boundary Layer, Re = 2.106. 

Since f o r  higher  values  of k t h e  form parameter a t t a i n s  
high values c l o s e  t o  2,  t h e  c a l c u l a t i o n  was c a r r i e d  out  w i t h  
a ,b ,  ca l cu la t ed  from (57) but only t o  H32t1.99; above t h a t  
ao1.99, b=O,was used. 

The  r e s u l t s  are shown i n  Fig.  16 .  I t  appears  t h a t  values  

Q f o r  E have decreased s i g n i f i c a n t l y .  I t  should be remembered 
t h a t  these c a l c u l a t i o n s  s t o p  a t  values  f o r  1-132 t h a t  are f a r  
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away from separation. Much more bleed-off than was necessary 
for prevention of separation took place then. By takin[ that 
into consideration and bleeding less off the trailing sdge zQ 
will perhaps not decre-se exactly down to laminar values but 
it will be of the same order of magnitude. 

The most favorable combination in Fig. 16, a=1.35, b=C.06, 
also turned out to be favorable for other cases where velocity 
is not linear. For the choice of arb, in the turbulent case 
the total pressure increase is almost the only decisive indi- 
cator. 

Values of c obtained so far are of the same mrgpitude as Q 
those obtained experimentally by Raspet [ 2 ] .  Unfortunately, 
no straightforward comparisons are possible since no experi- 
ments have been published so far for which distribiitions of 
pressure and bleed-off have beer: supplied. Another difficulty / 2 4 5  
should be pointed out. 
may in part lead t o  combinations of Hj2 and 62 where, according 
to estimates from section 4 ,  the boundary layer thickness ex- 
ceeds by far anything that is expected from the derivation of 
the boundary layer equations. 
(unpubl. .,bed) to experimental results that are not in agreement 
with the boundary layer equations. Understandably,62 increases 
less in the experiment than in theory. On the one hand the 
theoretically available contribution F to 6 2 ,  according to (301, 
cannot be determined experimentally from regions where the dif- 
ference between u and U is very small, since potential flow can 
already be detected in such regions. 

The turbulent bleed-off calculations 

Raspet and Cornish have pointed 

On the other hand the contributions of 6 2  that exceed a 
permissible boundary layer thickness reach into regions 
potential flow where dU/dx is smaller than a t  the wall. 

of 
It is 
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t o  be expected t h a t  the ipcreasz of 6 2 ,  according t o  t h e  pu l se  
theorem, w i l i  n o t  be reached, i . e . ,  t h a t  t h e  t h e o r e t i c a l  va lues  
f o r  d 2  and wi:h i t  for  v o ,  are too  l a rge .  That w A : l  keep me 
on t h e  safe s i d e  for most prcblem si ;uat ions.  

IC '€0 
4 70Y 

Fig. 16 
Form Parameter H 3 2  for  Strong Pressure  Increase  and Bleed-Off 
- of  t h e  Boundary Laycr per  ( 5 E )  and (56), Re=2.106. 
CQ of case  ( A ) ,  Fig. 1 4 .  

Quant i ty  Coef f i c i en t  FQ, Pulse  Loss Thickness 6 2 ,  and 

Dashed l i n e :  

Turbulent bleed-off  is a l s o  t o  be ccnsidered a s  d e f i n i t e l y  
p o s i t i v e  f o r  t h e  h i g h - l i f t  case i n  genera l .  The c;: # t i o n  which 
of t h e  two tvpes  of b leed-of f  i s  p r e f e r a b l e  must be decided by 
p r a c t i c a l  cons idera t ions .  Such a s i g n i f i c a n t  p r a c t i c a l  co:sid- 
e r a t i o n  would be  t h a t  of s a f e t y .  

Once a separa t ion  has taken p l ace  i t  can only bi. removed 
by a b a s i c  change i n  t h e  p re s su re  distribution, i n  a l l  cases 
of  b led  ocf boundary l a y e r s .  
f o i l s  t h a t  produce a marked h y s t e r e s i s  bo th  i n  t h e  laminar. and 
i n  t he  tu rbu len t  case .  But judging from t h e  l i n e  f o r  the 
laminar c 
a u t  boundary l a y e r  s h i f t  a lone  can a l s o  lead  t o  separa t ion .  

In  t h e  po la r  diagrams of  a i r  

i n  F i g .  16 t n a t  r e q u i i e s  a l i t t l e  less  b l eed -o f f .  Q 
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Since t h e  h i g h - l i f c  case occurs  pr imar i ly  during takeoff  and 
landinp, uhsre e a t s ,  bugs and b i r d s  can fo rce  a boundary layer  
s h i f t ,  i~ seems r o r k g p p r o p r i a t e  here  t o  apply turbulen t  b leed-  
of€ 2nd even t a  r o n i m r  cons t an t ly  whether l a a i n a r  flow uas 
not generat& though eve r s igh t .  In  theory t h a t  can hard ly  
happen siacrt b i eed -o f f  comes too l a t e  for  it. In p r a c t i c e  
blded-off i b  .ore or less d i s c o n t i m o u s  so t ha t  t h e  s l i g h t  
differences bacon lan ina r  and turbulen t  siphoning are hard 
to  ver i fy  a t  t he  s tar t .  
precamtionary measures not t o  work i n  a region where  pure 
boundary layer s h i f t  a lone  can a l ready  cause separa t ion  and 
crash. I t  is poss ib l e  t h a t  t h i s  may be t h c  reason for two 

se r ious  crashes t h a t  are so f a r  unexplained. 

I t  w i l l  probably be required tc take 
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